450 research outputs found

    Bridging tools to better understand environmental performances and raw materials supply of traction batteries in the future EU fleet

    Get PDF
    Sustainable and smart mobility and associated energy systems are key to decarbonise the EU and develop a clean, resource efficient, circular and carbon-neutral future. To achieve the 2030 and 2050 targets, technological and societal changes are needed. This transition will inevitably change the composition of the future EU fleet, with an increasing share of electric vehicles (xEVs). To assess the potential contribution of lithium-ion traction batteries (LIBs) in decreasing the environmental burdens of EU mobility, several aspects should be included. Even though environmental assessments of batteries along their life-cycle have been already conducted using life-cycle assessment, a single tool does not likely provide a complete overview of such a complex system. Complementary information is provided by material flow analysis and criticality assessment, with emphasis on supply risk. Bridging complementary aspects can better support decision-making, especially when different strategies are simultaneously tackled. The results point out that the future life-cycle GWP of traction LIBs will likely improve, mainly due to more environmental-friendly energy mix and improved recycling. Even though second-use will postpone available materials for recycling, both these end-of-life strategies allow keeping the values of materials in the circular economy, with recycling also contributing to mitigate the supply risk of Lithium and Nickel

    Frequency Dispersion of Sound Propagation in Rouse Polymer Melts via Generalized Dynamic Random Phase Approximation

    Full text link
    An extended generalization of the dynamic random phase approximation (DRPA) for L-component polymer systems is presented. Unlike the original version of the DRPA, which relates the (LxL) matrices of the collective density-density time correlation fumctions and the corresponding susceptibilities of polymer concentrated systems to those of the tracer macromolecules and so-called broken links system (BLS), our generalized DRPA solves this problem for (5xL)x(5xL) matrices of the coupled susceptibilities and time correlation functions of the component number, kinetic energy and flux densities. The presented technique is used to study propagation of sound and dynamic form-factor in disentangled (Rouse) monodisperse homopolymer melt. The calculated sound velocity and absorption coefficient reveal substantial frequency dispersion. The relaxation time is found to be N times less than the Rouse time (N is the degree of polymerization), which evidences strong dynamic screening because of interchain interaction. We discuss also some peculiarities of the Brillouin scattering in polymer melts. Besides, a new convenient expression for the dynamic structural function of the Rouse chain in (q,p)-representation is found.Comment: 37 pages, 2 appendices, 48 references, 1 figur

    Ternary Quarter Wavelength Coatings for Gravitational Wave Detector Mirrors: Design Optimization via Exhaustive Search

    Full text link
    Multimaterial optical coatings are a promising viable option to meet the challenging requirements (in terms of transmittance, absorbance and thermal noise) of next generation gravitational wave detector mirrors. In this paper we focus on ternary coatings consisting of quarter-wavelength thick layers, where a third material (H') is added to the two presently in use, namely Silica (L) and Titania-doped Tantala (H), featuring higher dielectric contrast (against Silica), and lower thermal noise (compared to Titania-doped Tantala), but higher optical losses. We seek the optimal material sequences, featuring minimal thermal (Brownian) noise under prescribed transmittance and absorbance constraints, by exhaustive simulation over all possible configurations, for different values (in a meaningful range) of the optical density and extinction coefficient of the third material. In all cases studied, the optimal designs consist of a stack of (H'|L) doublets topped by a stack of (H|L) doublets, confirming previous heuristic assumptions, and the achievable coating noise power spectral density reduction factor is \sim 0.5. The robustness of the found optimal designs against layer thickness deposition errors and uncertainties and/or fluctuations in the optical losses of the third material is also investigated. Possible margins for further thermal noise reduction by layer thickness optimization, and strategies to implement it, are discussed.Comment: (twocolum style) 13 pages, 8 figures, 4 table (updated version 5) Appearing on Physical Review Researc

    Trim17, novel E3 ubiquitin-ligase, initiates neuronal apoptosis

    Get PDF
    Accumulating data indicate that the ubiquitin-proteasome system controls apoptosis by regulating the level and the function of key regulatory proteins. In this study, we identified Trim17, a member of the TRIM/RBCC protein family, as one of the critical E3 ubiquitin ligases involved in the control of neuronal apoptosis upstream of mitochondria. We show that expression of Trim17 is increased both at the mRNA and protein level in several in vitro models of transcription-dependent neuronal apoptosis. Expression of Trim17 is controlled by the PI3K/Akt/GSK3 pathway in cerebellar granule neurons (CGN). Moreover, the Trim17 protein is expressed in vivo, in apoptotic neurons that naturally die during post-natal cerebellar development. Overexpression of active Trim17 in primary CGN was sufficient to induce the intrinsic pathway of apoptosis in survival conditions. This pro-apoptotic effect was abolished in Bax(-/-) neurons and depended on the E3 activity of Trim17 conferred by its RING domain. Furthermore, knock-down of endogenous Trim17 and overexpression of dominant-negative mutants of Trim17 blocked trophic factor withdrawal-induced apoptosis both in CGN and in sympathetic neurons. Collectively, our data are the first to assign a cellular function to Trim17 by showing that its E3 activity is both necessary and sufficient for the initiation of neuronal apoptosis. Cell Death and Differentiation (2010) 17, 1928-1941; doi: 10.1038/cdd.2010.73; published online 18 June 201

    Mixed order parameter symmetries in cuprate superconductors

    Full text link
    The recent observation of an inflection point in the temperature dependence of the in-plane magnetic field dependence (lambda_ab) is investigated within a two-band model with coupled order parameters of different symmetries. While the dominant order parameter has d-wave symmetry, the smaller one is of s-wave symmetry. Superconductivity is robust in the d-wave channel and induced via interband interactions in the s-wave subsystem.Comment: 10 pages, 4 figure

    Pathogenic p62/SQSTM1 mutations impair energy metabolism through limitation of mitochondrial substrates

    Get PDF
    Abnormal mitochondrial function has been found in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Mutations in the p62 gene (also known as SQSTM1) which encodes the p62 protein have been reported in both disorders supporting the idea of an ALS/FTD continuum. In this work the role of p62 in energy metabolism was studied in fibroblasts from FTD patients carrying two independent pathogenic mutations in the p62 gene, and in a p62-knock-down (p62 KD) human dopaminergic neuroblastoma cell line (SH-SY5Y). We found that p62 deficiency is associated with inhibited complex I mitochondrial respiration due to lack of NADH for the electron transport chain. This deficiency was also associated with increased levels of NADPH reflecting a higher activation of pentose phosphate pathway as this is accompanied with higher cytosolic reduced glutathione (GSH) levels. Complex I inhibition resulted in lower mitochondrial membrane potential and higher cytosolic ROS production. Pharmacological activation of transcription factor Nrf2 increased mitochondrial NADH levels and restored mitochondrial membrane potential in p62-deficient cells. Our results suggest that the phenotype is caused by a loss-of-function effect, because similar alterations were found both in the mutant fibroblasts and the p62 KD model. These findings highlight the implication of energy metabolism in pathophysiological events associated with p62 deficiency
    corecore